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Abstract

Mamori is a Web3 algorithmic smart contract auditing system focusing on zero-day economic
exploits and MEV (Maximal Extractable Value), addressing the challenges of scalability, automa-
tion, exploit detection relevance, and efficacy in the Web3 security landscape. Our mission is to
applly interdisciplinary technologies and protect against the ’unknown unknowns’ vulnerabilities.
To achieve this, we leverage algorithmic parsing techniques to establish smart contract sequences,
utilize reproducible stateful computation techniques, and incorporate innovative and customizable
algorithmic feedback mechanisms. This paper identifies the gap in the security spectrum, the
limitations of existing techniques, and explains how the Mamori’s architecture navigates these
challenges, facilitating a new standard in smart contract auditing.

1 Introduction

In 2023, losses exceeding 1.8 billion dollars were recorded across 751 incidents, with almost half of these
losses attributable to private key compromises in 47 incidents (Certik, 2024). The remainder of the
losses were due to the exploitation of technical and economic risks. Noteworthy incidents include Euler
Finance, which lost 200 million dollars due to a logic flaw, and BonqDAO, which was compromised
for 120 million dollars through oracle manipulation. These intimidating incidents are the fundamental
roadblocks to mass adoption. Technical risks exploit vulnerabilities in code and infrastructure, whereas
economic risks manipulate economic design of protocols, often exploiting them through multi-function
calls and smart contract state manipulation. Countermeasures for detecting smart contract vulnera-
bilities (Qian et al., 2022) encompass static analyzers and dynamic analyzers (fuzzing).

The primary limitation of static analysers lies in their focus on identifying technical risks, with a no-
table inability to detect economic risks. Economic risks often arise from complex interactions among
smart contract function calls. Even when potential minor issues, such as rounding errors or integer
overflows, are identified in a single function, the seemingly workable function is often combined with a
sequence of actions for exploitation [Refer to section 4.1].

For dynamic analysers, while they have shown promising progress, they suffer from the inherent issue
of an extensive search space and a high setup cost. For example, Echidna, developed by Trail of Bits,
uses property-based testing and requires the definition of precise properties that the contract should
always uphold. The need for accurate and comprehensive properties to catch vulnerabilities signifi-
cantly increases the setup cost for auditors.
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Mamori aims to address this critical space within the DeFi sector. It leverages an algorithmic parsing
technique to set up smart contract sequences, utilizes reproducible statefulness computation techniques
in the r-evm environment, and incorporates innovative and customizable algorithmic feedback mech-
anisms to efficiently reduce the false negative search and discover zero-day exploits. Recognizing that
technical risks, such as integer overflow, require function calls, a comprehensive detection algorithm
focused on multi-function calls can effectively cover both technical and economic risks.

Our goal is to bridge the false-negative gap. Even after undergoing a thorough audit, our algo-
rithm is still able to uncover vulnerabilities in an efficient way. Mamori also identifies the commonality
between traditional MEV and economic risk as a homogeneous optimization problem. Our algorithm,
with customizable features, will be extended to serve as a path-finding layer, covering the role of an
MEV searcher and maximizing its utilization.

This paper is structured as follows: Section 2 introduces our perspective on the root causes of smart
contract security issues. Section 3 presents the Mamori’s architecture and explains our approach to
formulating economic risk. Section 4 demonstrates the feasibility of our innovative solutions with
extrapolatable case studies. Section 5 concludes the discussion.

2 Root Cause of Vulnerabilities in Smart Contract Security

The current issue in security audits lies in the suboptimal approach to detecting the ”known unknowns”
region, which is publicly known by expert but the team is unaware of it. With the rising incidence
of zero-day smart contract attacks, the primary emphasis should be on defending against attacks that
are currently unknown, referred to as ”unknown unknowns.” However, security properties in static
prevention solutions are closely tied to known attacks and vulnerabilities, and these properties may
not provide comprehensive protection for smart contracts against new vulnerabilities (Ivanov et al.,
2023).

There are two broad categories for detecting smart contract bugs: static analysis, which includes for-
mal methods and symbolic execution, and dynamic analysis, commonly referred to as fuzzing. Static
analysis involves program analysis techniques used to analyse code and programs without executing
them. Security researchers identify potential bugs through intermediate representation-based analysis
methods, using a set of predefined or user-specified specifications, and generate a human-readable
security report. However, static analysers often suffer from issues such as overestimation of smart con-
tracts, leading to high false positives, or precise enumeration of symbolic traces, resulting in excessive
execution paths.

In dynamic analysis, there are two common approaches to fuzz testing: stateless and stateful fuzzing.
Stateless fuzzing disregards the previous state and reuses the state at each run (e.g., UniTest), limit-
ing its ability to detect state-related exploitations. Stateful fuzzing, also known as invariant testing,
generates a test case, i.e., the action sequence, and mutates parameters to detect vulnerabilities. The
challenge lies in the inherent difficulty of revealing bugs hidden in the ’exploitable regions’ not covered
by the fuzzer, which can result in false negatives (Qian et al., 2023).

Static analysis and even emerging machine learning technologies like LLM-based detection are con-
strained by past exploit experiences. Models and tools are trained based on historical exploitation
data to detect relevant vulnerabilities from the database. However, economic vulnerabilities are often
discovered under unique parameters and states with complex action sequences. Therefore, we need
a more comprehensive tool to address the root problem, and stateful fuzzing, considering different
parameters and combinations, should become the new standard for smart contract security.
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2.1 Limitations of Current Analytical Tools

Figure 1: Zhang et al., 2023. Demystifying Exploitable Bugs in Smart Contracts.

The table displays the current limitations of the existing techniques, with a focus on the “Orcl”
column, representing test oracles. #, G# , and  correspond to fixed and simple oracles, hand-coded
oracles, and oracles that can automatically adapt to cover a wide range of functional bugs, respectively.

The current techniques primarily rely on either simple and general oracles (denoted as #) or project-
specific hand-coded oracles (represented by G#) (Zhang et al., 2023). Echidna (Grieco et al., 2020)
requires a substantial hand-coded setup and a deep understanding of the targeted smart contract
logic, while Vultron (Wang, 2019) is not a fuzzer but rather a general-purpose vulnerability detection
oracle.

Most fuzzers involve simple invariant testing, while Mamori focuses on the ultimate and most cru-
cial oracle test, which is an economic exploit, while providing customizable features for users to test
specific invariants if needed. We argue that despite static analysers discovering a wide variety of bugs,
attackers still need to call function(s) as an entry point for exploitations. Therefore, our ideology is
to serve as the final guard to protect the gateway of exploitation with the most crucial invariant test
and advanced algorithmic solutions.

2.2 Current Toolings for Economic Risk - Stateful Fuzzers

Fuzzing refers to the process of sending a set of random inputs into the program and stress-testing
it against certain predefined conditions. It is also known as breaking the invariant. If the invariant
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does not hold under certain function calls, it is considered program bugs. To uncover complex vul-
nerabilities and bugs, a stateful fuzzer manipulates the program state across multiple operations and
allows the fuzzer to explore deeper state-related bugs, such as those that manifest only after a series of
specific actions. Mamori treats the ultimate goal of stateful fuzzing as finding economic exploits, which
requires the testing to reach a unique state as a precondition and execute the inaccurate function to
extract values.

To achieve this, in addition to the concept of reaching an exploitable state, our protocol defines
three core implementation components. First, the action sequence, also known as the initial seed, test
case, test scenario, or execution paths, represents the combinations of function calls aimed at revealing
vulnerable execution paths in smart contracts. Each fuzzer may have its unique transaction ordering
and dependency analysis to observe the function interactions on contract state and behavior.

Second, the fuzzing inputs, also known as input vectors or test data, consist of the input parame-
ters of a function. These parameters are mutated across iterations and the testing process through a
feedback mechanism. Customizable heuristics and anomaly detection rules are employed to identify
suspicious behavior and guide the mutation of the next set of fuzzing parameters. In a traditional
coverage-guided fuzzer, input mutations are performed randomly, and the fuzzer executes the mutated
input to check whether the invariant is upheld.

The third core component of stateful fuzzing is the test oracle, which is commonly known as an
invariant, test assertions, or security properties. The test oracle defines the vulnerability, and if the
oracle is violated during testing, it indicates the presence of the targeted vulnerability.

Upon completing the stateful fuzzing process, coverage metrics are used to assess how thoroughly
the fuzzer has tested the smart contract. However, it’s important to note that having the highest code
coverage does not necessarily guarantee the minimum chance of false negatives. Given the complex
search space in stateful fuzzing, the literature has not reached a consensus on the best metrics to eval-
uate the performance of fuzzers. A combination of metrics, including code coverage, function coverage,
input space coverage, and state coverage, may be used to ensure comprehensive testing.

Current stateful fuzzers primarily innovate in these three components. CONTRACTFUZZER (Jiang
et al., 2018) was one of the earliest fuzzing frameworks, extracting the data types of each arguments
of API functions and signature used in ABI functions. However, its testing process involves random
function invocations with random inputs within the valid input domain. HARVEY (Wüstholz et al.,
2020) fuzzes transaction sequences in a demand-driven manner, utilising regularity or aggressiveness
based on coverage increase. It generates input parameters using predictive inputs, considering specified
cost metrics such as executions that flip a branch condition to increase coverage. sFUZZ (Nguyen et
al., 2020) introduces innovation by generating new test cases using adaptive objective function and
AFL fuzzer, employing genetic algorithm, , and updating based on the feedback. Its aim is to create a
set of test cases that maximises branch coverage . ECHIDNA (Grieco, 2020) is one of the few fuzzers
that innovates through the test oracle. Auditors can set up properties involving the testing process
of pre-conditions, actions, and post-conditions. They check if the combinations of transactions fulfill
the expected outcomes. However, using ECHIDNA requires a high entry barrier, as understanding the
smart contract and identifying relevant hand-coded properties may significantly increase the setup cost.

CONFUZZIUS (Torres et al., 2021) was the first fuzzer to employ a hybrid approach. It extracts
data dependencies through static analysis and dynamically retrieves access patterns to state variables
at runtime by iterating through the execution trace for opcode SLOAD and SSTORE instructions
to generate action sequences. This hybrid approach was later extended by both SMARTIAN (Choi
et al., 2021), which enhances the fuzzing module to mutate parameters based on DataFlowGain by
identifying new functions that use any variable defined by previous calls to access new states, and
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CROSSFUZZ (Yang et al., 2024), which generates action sequences based on inter-contract data flow
information and dependencies.

There are some more recent emerging fuzzers. IR-FUZZ (Liu et al., , 2023) extends sFUZZ on
the test cases mutation by introducing techniques that consider data dependencies between functions
to explore richer states. It also incorporates a branch distance-based measure and branch search algo-
rithm for energy allocation. ITYFUZZ ’s (Shou et al., 2023) core innovation lies on the snapshot-based
approach which allows for quick backtracking to the interesting state, namely corpus, and re-execution
of fuzzing with different action sequences toward interesting corpus.

Mamori, as a security protocol designed to minimize smart contract economic risks, identifies the
current limitations of fuzzers. The core limitation is that most fuzzers combine test case generation
with parameter mutations. The rationale behind this is to maximize certain metrics such as branch
coverage, data flow information, control flow, and code coverage. Despite this methodology potentially
increasing the number of tested action sequences, it may significantly increase the chance of false neg-
atives since the exploitable region based on input parameters given a sequence is often narrow (Check
4.2). Moreover, most fuzzers test against a simple and general oracle (See 2.1) and are limited at the
syntactical level, suffering from both false negatives and false positives. These oracles are not tested
against economic risk but assume domain patterns for specific types of vulnerabilities.

The following sections will demonstrate how Mamori addresses these limitations with interdisciplinary
insights and the latest technology, along with additional features to mitigate the core vulnerability
issue - economic risk.

3 Methodology

3.1 Mamori’s Architecture
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Our architecture is fine-grained through the Lanturn framework (Balbel et al, 2023) and we focus on
the practicality on detecting economic risk.

1. We leverage algorithmic modelling on the source code to reduce all user callable functions N to
state-changing functions N ( 1 )

2. The block height (h) ( 2 ) pre-define the initial state of the blockchain environment. For pre-
deployment auditing, we start with arbitrary state or empty state.

3. The test case formulation ( 3 ) learns the optimal action sequence, −∗, from several sources such
as discrete optimisation methods. The optimal action sequence iteratively learn the simulated
outcome and learn the potential optimal action sequence. On top of our proposed methods, we
also integrate other fuzzers specialising test case formulation for comprehensiveness. Mamori
also provides customisable features on prioritising the more suspicious case based on historic
data and auditor preference.

4. Given an action sequence, Γi, we conduct a black-box optimisation for the continuous search space
( 4 ) at the simulator (See 3.6 ( 5 )), lower-level r-evm environment, and return the maximised
value based on our test oracle ( 6 ).

5. Ultimately, our system will return the trace of the exploitable action with their corresponding
input and output( 7 )

3.2 The Optimisation Problem of Stateful Fuzzing

The optimization in our system involves two parts: a bi-level optimization in a hierarchical structure
with an upper-level for test case generation and a lower-level for input space exploitation. The first
part involves optimizing discrete values within the action space. This can be computationally inten-
sive, especially when testing all possible user actions with at most K actions. The goal is to eliminate
sequences that are highly unlikely to have a positive exploitable value (EV).

The second part deals with the optimization of a non-convex black-box function in the absence of
a dataset. The combination of action sequences creates a highly convoluted function for calculating
the exploitable value. Depending on the discrete action lengths, each action sequence has its own
unique form of convexity. Thus, we cannot generalize a clear mathematical form of the objective func-
tion since a change in one action within an action sequence could drastically alter its functional form.

Our unconstrained input parameters are mostly continuous, which exponentially increases the con-
tinuous search space. To address this issue, we must develop heuristics to constrain the initial input
parameters, such as setting limits based on the depth of liquidity within the smart contract, known as
the optimization bound. In addition to the challenge of unconstrained continuous input parameters,
non-convex black-box optimization inherently exhibits high dimensionality, leading to increased com-
putational costs. Moreover, this high dimensionality makes the optimization process sensitive to the
choice of initial search parameters and hyperparameters.

3.3 Our Approach to Detect Economic Exploits

3.3.1 Settings

The exploitable value of any DeFi system can be defined as:

EV = f(Γ⃗|Φ)

, where Γ⃗ is a vector representing an unique action sequence with a length of k containing user functions
γ1, γ2, ..., γk ∈ Nviable. The total set of user-callable functions is defined as N , and our pre-screening

6



process will identify a subset of viable functions Nviable ⊂ N based on their impact on smart contract
states, ϕ. Φ contains a vector of system states ϕ1, ϕ2, ..., ϕk.

An attack usually takes more than 1 step and the system states will be affected by Γ and its pre-
vious value after each time step.

ϕt = g(γt−1|ϕt−1)

After establishing the set of action sequences, for each sequence Γi within the total viable set A of
distinct action sequences, we optimise the user input values x⃗ = (x1, x2, ..., xk) for each function γi in
Γi.

3.3.2 Optimization Process

We can express our optimisation process in a bi-level manner, with the higher level being the discrete
optimisation, which can be formulated as follows:

Γ⃗∗ = argmax
Γ⃗∈A

G(Γ⃗) (1)

where G is a function (possibly based on historical rewards or external matrics) that evaluates the
potential of the maximising EV of each action sequence in A.

Once Γ⃗∗ is selected, we proceed with a lower-level continuous optimisation over user input values
x⃗ and can be express as

max
x⃗∈X

f(Γ⃗∗(x⃗)|Φ) (2)

, where X is the valid choice for x⃗ that constrain the infinitely continuous search space. The ultimate
goal of Mamori is to find the optimal Γ⃗∗ with the corresponding x⃗ that provide a positive EV .

3.4 Test Oracle for Economic Risk

The test oracle is also known as the invariant that we test against.. The current tools pursue a specific
purpose of auditing, defining invariant at a syntactical level. For example, SMARTIAN test against 13
classes of test oracles such as assertion failure (AF) which corresponds to the execution of an INVALID
instruction. Almost all vulnerability patterns at the syntactic level can be traced back semantically to
the mismatch between the actual transferred amount and the amount reflected in the contract’s inter-
nal bookkeeping (Wang et al., 2019). They propose two invariants: the balance invariant, based on the
consistency between the contract’s balance and the sum of all participants’ bookkeeping balances, and
the transaction invariant, based on the amount deducted from a contract’s bookkeeping balances and
its deposition into the recipient’s account. Apart from their implicit challenges with the oracle, such
as identifying bookkeeping variables, handling non-currency assets, and verifying invariants under gas
consumption, we argue that these invariants also focus on the inconsistency of smart contract functions
and precision errors rather than economic risk.

Therefore, our view of economic risk is based on whether there is an increase in the attacker’s balance.
An economic exploit occurs if and only if the balance of an attacker after the action sequence is greater
than the post-action balance. This concept shares commonality with the Maximal Extractable Value
(MEV) derived from arbitrage opportunities and market conditions (Babel et al., 2023).

Therefore, we define the invariant of the economic risk as follows:

EV (p, ϕ) =
∑
p∈P

∑
a∈τ

balancea,p,t − balancea,p,t0 (3)

, where p is address used during the exploit and P is the total number of addresses. Some exploits
involve the creation of multiple address such as liquidator and borrower. τ is the total type of token
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and we compare the balance a. t refers to the time and t0 refers to the initial time. This test oracle
for economic risk is generalised at the semantically level and can be understood as given any state, ϕ,
the total of the post transaction exceeds the initial balance.

3.5 Sequence Invocation

To obtain significant efficacy gain, we must find a way prioritize function-call sequences with a high
probability to trigger an economic exploit. To do so, we deploy heuristics in Mamori to help identify
high-value sequences, with high-value being defined as a high probability of a given sequence containing
value extraction opportunity. Heuristics involved here are:

• If a given function f(x) reads and make use of state, ϕ, and function g(x) contains the logic that
will alter state, ϕ, then g(x) can be executed before f(x)

• By “make use of”, it could mean the following:

– require statements that needs ϕ to be at certain state before f(x) could continue execute

– if-else statements that determines which branch f(x) will proceed on given ϕ

Taking a function sequence as an example, “function deposit() → withdraw() → swap()” would
have a higher value than “function withdraw() → deposit()” because intuitively, if a deposit is
made by a user, then there would be a balance state altered, and that would enable the ability
of withdrawal.

To further simplify and illustrate, below is a Solidity Snippet:

1 // SPDX -License -Identifier: Unlicensed

2 pragma solidity ^0.8.0;

3
4 contract SimpleStorage {

5 uint256 public storeIndex;

6 mapping(address => uint256) public balances;

7
8 function set(uint256 newIndex) public {

9 // Change the state

10 storeIndex = newIndex;

11 }

12
13 function updateBalance () public {

14 // Use the state for arithmetic

15 balances[msg.sender] = storeIndex * 2;

16 }

17 }

Alongside is the pseudocode that outputs sequence that should be prioritized:

Algorithm 1: Output Sequence Prioritization

function FindStateDependencies(SolidityContract):
ContractFunctions, States ← ExtractFuncAndState(SolidityContract);
FunctionOrder ← ∅;
for State in States do

FunctionOrder.push(FindFuncThatAccessState(State));
FunctionOrder.push(FindFuncThatWriteState(State));

end
return FunctionOrder ;

In the above Solidity snippet, ‘FunctionOrder‘ sequence would therefore be [updateBalance(), set()].
With the ‘FunctionOrder‘ outputted, the Mamori execution module can then first execute functions
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at the top of the stack (‘set()‘), and execute function at the bottom of the stack the last (‘updateBal-
ance()‘).

Therefore, the heuristic of sequence invocation has the ability to prioritise interrelated functions.
Function sequences that are interrelated will feed into the optimizer first and test for economic vul-
nerabilities given changing and using certain global states throughout the execution.

3.6 Stateful Computation

One of our core features in the realm of stateful fuzzing is the utilization of past input results as
guidance for future inputs in order to gradually locate vulnerabilities. This section gives into our
implementation with a specific focus on optimizing computational speed.

In pursuit of maximising test velocity, we begin by examining the Ethereum instance at its most
granular level. Our fundamental question is: “How can we streamline the Ethereum instance by re-
moving all unnecessary components and retaining only those essential for the seamless operation of
our product?”

Ethereum, as a blockchain, operates as a continuous and stateful environment that persists indefinitely.
However, for Mamori, we only require an execution environment tasked with input validation, output
analysis, and iterative input optimization. As such, our requirements can be met with an ephemeral
execution environment with the usage of a temporary database residing in memory. The temporary or
in-memory database would have a copy of all relevant key-value pairs from the blockchain as context
for running Mamori. Therefore, Mamori is not only capable of testing pre-production smart contracts,
but also smart contracts that are already live and serving customers in production blockchain networks.

To establish an ephemeral execution environment, we initially began with Foundry, a testing toolkit,
but eventually opted to directly utilize revm, the Rust implementation of the EVM. Foundry served
as an accessible starting point with its integration of the Rust implementation of the EVM (revm).
Additionally, Foundry offered flexibility, including adjustable block gas limits and contract sizes, en-
abling us to execute a substantial number of iterations with the algorithm.

However, tests in Foundry are written in Solidity, meaning that support for complex mathematics
is limited, making it challenging to implement intricate optimizing algorithms. Consequently, we
chose to implement Mamori directly with the Rust implementation of the EVM, which allows us to
achieve greater low-level control. This includes the ability to lock the test environment to a specific
state with lower memory usage than Foundry and only use the temporary database, thereby enhancing
computation speed. A few runtime optimization approaches we could take to substantially increase
testing speed is:

• Removal of unneeded overhead in the execution environment

• Make the temporary database support asynchronous i/o

• Parallel execution

4 Proof of Concept

To assess the effectiveness of our approach, we meticulously document three extrapolatable cases in
the past to facilitate the understanding of Mamori. At the current proof-of-concept stage, our pri-
mary objective is to demonstrate the effectiveness of our search algorithm, which is currently based on
Swarm Intelligence—a field within artificial intelligence (AI) that leverages the collective behavior of
elements in decentralized and self-organized systems (Tang et al., 2021). This approach enables more
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effective searches in high-dimensional, non-convex spaces.

While we are currently demonstrating the cases with Swarm Intelligence, we remain open to the
possibility of exploring other machine learning algorithms or combinations thereof in our ongoing ef-
forts to enhance the efficiency of our search methodology, tailored to the nature of the targeted protocol.

In our proof of concept (POC), we utilize Particle Swarm Optimization (PSO), which is a subset
of Swarm Intelligence, to assess the feasibility of integrating interdisciplinary intelligence. PSO is ini-
tialized with a group of random (heuristic) particles, representing a random valid solution space. Each
particle updates two properties during the iterative process: velocity and position. They individually
search for the optimal Exploitable Value (EV) in their respective spaces and communicate iteratively
with their individual optimal values. We then determine the global optimal solution based on the
best of the current individual optimal values. The particles continuously adjust their velocities and
positions based on both individual and global optimal solutions, and this process can be formulated
as follows:

vt+1 = c1vt + c2r1(pi,txt) + c3r2(pg,txt)

xt+1 = xt + vt+1.

vt and xt are the velocity and position of particle i and iteration t respectively. pi,t and pg,t are
the individual and global optimal value of particle i found before iteration t. c1, c2, c3 are the iner-
tia, cognitive and social coefficients respectively and r1, r2 are the random parameters to facilitate
exploration. The following sub-section explains the core insights from past exploited reproduced by
Mamori’s algorithm.

4.1 Raft Exploit - Denote Inflation. Lost: 3.2 Million

The economic exploit of Raft serves as an illustrative example highlighting the current limitations of
smart contract security within the DeFi space. Raft is a lending protocol that enables users to generate
R tokens by depositing Liquid Staking Tokens (LSDs) as collateral. The security issue arises in the
”mint” function, which utilizes the ”divUP” function for rounding up the minting calculation. An
attacker can exploit the rounding-up behavior of the ”divUP” function by making extensive donations
of cbETH to artificially inflate the Raft collateral ”storedIndex.” As a result, the attacker can accu-
mulate an excessive amount of collateral tokens due to the miscalculation. The attack is completed by
minting and selling R tokens, demonstrating the vulnerability in the system.

Trail of bits (2023)’s audit reports suggested a satisfactory performance of arithmetic category and
unable to spot the logical and design error of calculation function used in the mint function. An in-
dependent auditor, Antonio Viggiano (2023), later found the potential issue of the rounding error and
suggested to round down on mint based on the principle of rule-of-thumb on rounding (Schaffranek,
2023).

This incident highlights two core security limitations: the imperfection of static analysis and the
challenge of discovering exploitation even in the presence of potential errors. Dynamic analysis should
theoretically cover this type of exploit, and Trail of Bits also suggested conducting dynamic and end-
to-end testing of the system using Echidna in their audit report for Raft. Mamori aims to redefine the
crypto security space by addressing these limitations with a focus on detecting economic exploits and
setting a new standard for auditing with a focus on invariant testing.

In our proof-of-concept stage for this case, we have demonstrated two significant feasibility aspects
for dynamic analysis in general. First, multi-block exploitation can be reduced to a single block. In
hindsight, the attack manipulated the ‘currentIndex‘ (the key state that trigger rounding errors when
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significantly moved) through multiple donations and liquidations, and our POC showed that this is
reducible. Second, certain types of exploitation involving loops can also be reduced to a single action.
The attack repeated the minting action sixty times in a loop. However, with Mamori’s oracle for
economic exploits, we can already detect the exploitative sequence with a single action.

Our proof-of-concept further demonstrates that while an real-world attack might be significantly com-
plex that are difficult to analyse, which include steps such as creating a suitable attack environment
and maximizing exploitable value, they can in fact be all abstracted into exploits of flawed protocol
design, which Mamori is exactly good at - abstracting complexity and locating what’s hidden.

4.2 Saddle Finance - Logic Flaw. Lost: 10 Million

Saddle Finance is an AMM that uses elements of Curve within its protocol. But instead of forking the
original Vyper code, they reimplement Curve’s Meta pool in Solidity allowing a token to be swapped
for an LP token. The error exists from the price miscalculations of the value of tokens given, based
upon the base virtual price of the LP token. The bug is triggered from the function of ‘MetaSwa-
pUtils‘ allowing attack to extract economic profit by simply swapping sUSD for LP token followed by
swapping LP token back for sUSD via Meta pool. The same bug also got exploited by its fork Synapse
and Nerve which were drained over $8 million and $537,000 respectively. The same bug contributes
total 18 million drained.

Saddle Finance found 3 auditing agencies, Certik, Quantstamp and OpenZepplin, to conduct their
protocol audit. However, the cost of auditing is accounted by number of contracts and it is common
that auditors do not audit those contracts which are out of their scope. Consequentially, despite Certik
and OpenZeppelin have conducted a protocol audited and Quantstamp audited both protocol, virtual
swap and token contracts, the contract related to Meta-pool swap is out of their scope. Thus, the
function of an unaudited contract results in a huge exploitation.

Figure 2: The exploitable continuous region of Saddle Finance Exploit

Our POC shows that although it is a rather simple exploitation with 2 dimensional step, the exploitable
region is still relatively narrow which requires an intellectual exploration of the continuous space.
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We found the maximise exploitable value and visualise the 2 dimensional exploitation for deeper
understanding. Figure 1 shows the extensive continuous search space of the exploitable region. x1 and
x2 refer to the parameters of input of swapping to LP token and swapping back for sUSD respectively.
Purple region refers to the invalid input parameters space and the green region refers to the valid input
parameters space without exploitation. The yellow region refers to the combinations of x1 and x2 to
successfully execute the economic exploit.

4.3 Deus DEL - Wrong implementation. Lost: 5.4 Million

DEUS Finance is a platform for decentralized financial services and back in May 2023, their stable-
coin “DEIstablecoin” executes an incorrect burnFrom function. Instead of using the OpenZeppelin
ERC20 standard, the protocol implements their own burnFrom function but their “currentAllowance”
is written as “ allowances[account][ msg.sender()], instead of “ allowances[ msg.sender()][account]”,
ultimately using the victim’s tokens without authorisation.

Similarly to Saddle Finance, Certik audited the AMM product of the Deus Finance which is out
of scope of the Stablecoin vulnerability. Although Armor Labs conducted audit on the lending proto-
col, but the issue contract “LERC20Upgradable.sol” is not included in the audit report. The purpose
of this POC case is to demonstrate the ability of Mamori’s integration on detecting the economic risk
of self-written implementation.

5 Conclusion

Existing tools are far from perfect, and we need a more comprehensive platform to enhance smart
contract security. Some features that are necessary for auditing, such as multi-contract auditing, are
crucial. Zhang et al. (2023) have shown that price oracle manipulation is the most commonly exploited
vulnerability across various popular DeFi categories, including Dexes, Yields, Derivatives, and yield
aggregators, while lending is susceptible to implementation-specific bugs. xFuzz (Xue, 2022) has re-
vealed that CONTRACTFUZZER and sFUZZ may miss some cross-contract vulnerabilities, whereas
xFuzz focuses on cross-contract vulnerabilities. However, their machine learning-guided fuzzing may
be weak in optimizing the continuous search space and may not cover certain issues like integer over-
flows/underflows (Qian et al., 2023).

Mamori identifies the existing limitations of security auditing techniques. With its innovative frame-
work that improves on many details, including:

• An advanced stateful computation structure.

• Reduction of the setup cost in finding valid functions with algorithmic parsing implementation.

• An innovative interdisciplinary feedback mechanism and sequence initialization.

• A customisable feature to act as an MEV searcher.

Existing techniques, including ML models and static analysers, have progressively covered the ”known
unknowns” region and attempted to eliminate recurrent exploits. However, we believe that no single
algorithm can perfectly cover all types of economic exploits. Mamori’s mission is to leverage diverse
technologies and protect against the ”unknown unknowns” vulunerabilities, providing a facilitative
environment for innovative features in the smart contract space.
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